$p$-adic transcendental numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computable p–adic Numbers

In the present work the notion of the computable (primitive recursive, polynomially time computable) p–adic number is introduced and studied. Basic properties of these numbers and the set of indices representing them are established and it is proved that the above defined fields are p–adically closed. Using the notion of a notation system introduced by Y. Moschovakis an abstract characterizatio...

متن کامل

Transcendental numbers having explicit g-adic and Jacobi-Perron expansions

© Université Bordeaux 1, 1992, tous droits réservés. L’accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier do...

متن کامل

Notes on p-adic numbers

as one can check using induction on l. The usual absolute value function |x| satisfies these conditions with the ordinary triangle inequality (4). If N(x) = 0 when x = 0 and N(x) = 1 when x 6= 0, then N(x) satisfies these conditions with the ultrametric version of the triangle inequality. For each prime number p, the p-adic absolute value of a rational number x is denoted |x|p and defined by |x...

متن کامل

Computations with p-adic numbers

This document contains the notes of a lecture I gave at the “Journées Nationales du Calcul Formel” (JNCF) on January 2017. The aim of the lecture was to discuss low-level algorithmics for p-adic numbers. It is divided into two main parts: first, we present various implementations of p-adic numbers and compare them and second, we introduce a general framework for studying precision issues and ap...

متن کامل

p - adic numbers , LTCC 2010

The following is a proof which is independent of this characterisation. First assume that ‖ ‖ is non-archimedean. Let x, y ∈ K. Using that ‖ ‖ extends | | we then obtain |x + y| = ‖x + y‖ ≤ max{‖x‖, ‖y‖} = max{|x|, |y|} which shows that | | is non-archimedean. Now assume that | | is non-archimedean. Let x, y ∈ K̂. Let ε > 0. Since K is dense in K̂ there exist u, v ∈ K such that ‖x − u‖ < ε and ‖y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1990

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1990-0994783-3